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A BREAKDOWN-FREE VARIATION 
OF THE NONSYMMETRIC LANCZOS ALGORITHMS 

QIANG YE 

ABSTRACT. The nonsymmetric Lanczos tridiagonalization algorithm is essen- 
tially the Gram-Schmidt biorthogonalization method for generating biorthogo- 
nal bases of a pair of Krylov subspaces. It suffers from breakdown and insta- 
bility when a pivot at some step is zero or nearly zero, which is often the result 
of mismatch of the two Krylov subspaces. In this paper, we propose to modify 
one of the two Krylov subspaces by introducing a "new-start" vector when a 
pivot is small. This new-start vector generates another Krylov subspace, which 
we add to the old one in an appropriate way so that the Gram-Schmidt method 
for the modified subspaces yields a recurrence similar to the Lanczos algorithm. 
Our method enforces the pivots to be above a certain threshold and can handle 
both exact breakdown and near-breakdown. In particular, we recover look- 
ahead Lanczos algorithms and Arnoldi's algorithm as two special cases. We 
also discuss theoretical and practical issues concerning the new-start procedure 
and present a convergence analysis as well as some numerical examples. 

1. INTRODUCTION 

Eigenvalue problems arise in various applications of science and engineering. 
Numerical discretization of physical problems frequently leads to computations 
of some eigenvalues of large sparse matrices, both symmetric and nonsymmet- 
ric. Over decades, numerous computational methods have been developed, and 
attention, in particular, has been paid to large sparse problems in recent years. 
For a list of applications and literature, we refer to [21 ] for the symmetric prob- 
lem and [18] for the nonsymmetric problem. For large symmetric matrices, the 
symmetric Lanczos algorithm has proved to be an effective method for comput- 
ing a few eigenvalues. As is well known, some substantial difficulties emerge in 
the nonsymmetric case, and a long-standing problem is to search for an efficient 
way to overcome these difficulties, which is the problem we are concerned with 
in this paper. 

The symmetric Lanczos algorithm [19] is based on constructing an orthonor- 
mal basis for a Krylov subspace by the Gram-Schmidt method. Using a three- 
term recurrence, it is very economical in both computation time and storage 
space and, at the same time, offers fast convergence to eigenvalues (cf. [ 1 5, 21]). 
For nonsymmetric matrices, the Gram-Schmidt (biorthogonalization) method 
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can be used to construct biorthogonal bases of two Krylov subspaces and Lanc- 
zos [19] developed an algorithm, now called the nonsymmetric Lanczos al- 
gorithm, for constructing these bases via a two-sided three-term recurrence. 
Though having some attractive features of the symmetric case, the nonsymmet- 
ric Lanczos algorithm is liable to breakdown and near-breakdown (i.e., appear- 
ance of a zero or nearly zero pivot in a division) and is potentially unstable. 
This is one of several problems arising in the generalization to the nonsym- 
metric case. Another problem concerns the analysis of convergence, which has 
recently been done in [30]. 

Several modifications of the Lanczos algorithm have been introduced to deal 
with the difficulty of breakdown. In [23, 27], a look-ahead Lanczos algorithm 
(LAL) was developed from a modified LDL* decomposition of a moment 
matrix. It uses a block pivot, if necessary, and constructs slightly changed 
biorthogonal bases of the same Krylov subspaces. On the other hand, the rela- 
tion between the Lanczos tridiagonalization algorithms and formal orthogonal 
polynomials has been studied (see [12], for example) and a nongeneric Lanc- 
zos algorithm was developed in [10, 11]. Based on the recurrence formula 
satisfied by formal orthogonal polynomials, the nongeneric Lanczos algorithm 
produces block biorthogonal bases of the two Krylov subspaces. Considera- 
tion of near-breakdown and an efficient implementation were given in [8, 11]. 
Unfortunately, both of these two methods may encounter so-called incurable 
breakdown (see [11, 22, 27]) and may not resolve within certain steps, a curable 
breakdown. Although theoretically an incurable breakdown yields some eigen- 
values, its numerical detection is not easy, and the eigenvalues obtained may 
not be the ones that are of interest. Another generalization of the symmetric 
Lanczos algorithm is Arnoldi's algorithm (see [1, 26]), which does not have the 
difficulty of breakdown. Using a single Krylov subspace, the Arnoldi algorithm 
produces an orthonormal basis by the Gram-Schmidt method; however, all it- 
erative vectors are present in the recurrence. This significantly increases the 
computational cost and the demand of storage, and is therefore of limited use 
in applications to large matrices. The breakdown phenomenon has also been 
studied in the context of nonsymmetric linear systems (see [4, 7, 9, 11, 16]). 
For further discussions of the Lanczos algorithms, see [2, 3, 5, 20, 22, 24]. 

In this paper, we derive a new algorithm, which is a generalization of both 
the original look-ahead Lanczos algorithm and the Arnoldi algorithm, and pro- 
vides a connection between them. We observe that the magnitude of the pivots 
in the nonsymmetric Lanczos algorithm is essentially fixed by the Krylov sub- 
spaces. The difficulty with the incurable breakdown suggests that the two Krylov 
subspaces may not match well, and should therefore be changed. When a near- 
breakdown occurs (the pivot given by two basis vectors constructed is less than 
a threshold parameter), we propose to replace one of the two vectors by a "new- 
start" vector. Then a Krylov subspace can be generated from the new-start 
vector. We then modify one of the old Krylov subspaces by adding the new one 
to it in an appropriate way, so that the biorthogonalization step in the Gram- 
Schmidt method for the modified pair of subspaces is reduced to a recurrence 
similar to the nonsymmetric Lanczos algorithm with a few more terms added. 
With the new-start strategy, our method keeps the pivots above the threshold 
and, at the same time, produces a matrix in condensed form (banded upper 
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Hessenberg form, see ??3 and 4), which can be used to approximate the original 
matrix. 

We also point out that the Lanczos algorithms may suffer from a bad choice 
of the Krylov subspaces not only in the nonsymmetric case but also in the 
classical symmetric case. For instance, if the initial vector in the symmetric 
Lanczos algorithm has small components in the eigendirections of interest, then 
convergence could be significantly slow. Of course, a single Krylov subspace 
cannot contain information on multiplicities of eigenvalues. In practice, it will 
also be difficult to find clustered eigenvalues from a single Krylov subspace. 
Under these circumstances, changing the single Krylov subspace to a sum of 
two will be beneficial and necessary. So a symmetric version of the algorithm 
presented in this paper will be relevant also in the symmetric case. We leave 
the details to future work. 

The paper is organized as follows. We first briefly describe in ?2 the nonsym- 
metric Lanczos algorithm and its modifications, as well as the Arnoldi algorithm. 
We then present our main algorithm and related results in ?3, and follow this 
by a section on a projection matrix. We also discuss theoretical and practical 
issues concerning the new-start procedure in ? 5. It turns out that the look-ahead 
Lanczos algorithm and the Arnoldi algorithm can be recovered as two special 
cases of our algorithm. Also, there is a symmetric version of the algorithm 
for symmetric pencil problems. These topics, together with some comparisons, 
are the subjects of ?6. Following that, we establish convergence results in ?7. 
Finally, we present some numerical examples in ?8 and concluding remarks in 
?9. 

We follow the notational convention used in numerical analysis. In particular, 
11* represents the 2-norm for both vectors and matrices. The m x m identity 

matrix is denoted by Im, and ei, m denotes the ith coordinate vector in Rm, 
i.e., [el,m, ..., em,m] = Im. Furthermore, 3ij is the Kronecker symbol and 
(x, y) is the angle between the vectors x and y. 

2. LANCZOS ALGORITHMS 

There are several different generalizations of the classical symmetric Lanczos 
algorithm to the nonsymmetric problem. These include, for example, the (two- 
sided) nonsymmetric Lanczos algorithm, the look-ahead Lanczos algorithm, the 
nongeneric Lanczos algorithm and the Arnoldi algorithm. They are based on 
different interpretations of the symmetric Lanczos algorithm, such as the Gram- 
Schmidt orthogonalization method, the LDL* decomposition of a moment 
matrix and generation of orthogonal polynomials. In this section, we briefly 
describe three generalizations that are closely related to our method; the details 
can be found elsewhere. 

2. 1. Nonsymmetric Lanczos algorithm. In [ 19], Lanczos presented his algorithm 
for nonsymmetric matrices in the form of two-sided iteration. Given two initial 
vectors Pi, q1 , they determine two Krylov subspaces (or more precisely, two 
sequences of Krylov subspaces) 

Km(ql) = span{ql, Aq1, ..., Am-lq} 
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and 
Km(pl) = span{pl, A*pl, ***, (Am-1)*p1}. 

It is well known that applying the Gram-Schmidt biorthogonalization method 
(cf. [23]) to the two given bases of Km(ql) and Km(pl) yields the following 
three-term recurrence: 

(1) 8j+lqj+l =s Aqj - ajqj -yjqjl 

(2) Yj+lP*+ = rj = pjA - ajp* - 8jp* 

where po, qo =0, and 8lj+IYj+I = rj*sj, aj = p Aqj. 
If rj*sj = 0, then Pj+l and qj+i cannot be defined and the algorithm is 

said to break down at step j. This, together with the instability that it causes 
when the algorithm is close to breakdown (i.e., when cos(rj, sj) 0) has been 
a major difficulty in the application of the nonsymmetric Lanczos algorithm. 
Note here that wj := cos(pj, qj) is generally referred to as the jth pivot. 

When no breakdown occurs (i.e., in the generic case), the algorithm produces, 
at step m, biorthogonal bases {PI , P2, ... . Pm I} {qi , q2 .** q,m }, i.e., 

piqj =5j}, 

and a tridiagonal matrix 

Ce Y2 
fl2 a2 

am-1 Ym 
< lS~~~m ami 

such that 
Tm =PmAQm, 

where Pm = [Pi, ...,Pm] and Qm = [ql, ... , qm]. In particular, at step n, 
the matrix Tn is similar to A. An important point about the Lanczos algorithm 
is that, even when m << n, some eigenvalues of Tm give good approximations 
to those of Tn, and hence those of A (see [30] for an analysis). 

2.2. Look-ahead Lanczos algorithm. As we have mentioned, the nonsymmetric 
Lanczos algorithm suffers from breakdown and is, therefore, regarded as unsta- 
ble in general. In dealing with this difficulty, the look-ahead Lanczos algorithm 
(LAL) was introduced in [23, 27]. The idea can be described as follows. 

Consider the jth step of the Lanczos algorithm and let the vectors rj, sj 
be generated by (1) and (2). The regular Lanczos algorithm generates the next 
basis vectors pj+ 1 , qj+ 1 by normalizing rj, sj, which involves a division by the 
(j + 1)st pivot wj+I = cos(rj, sj) . So the difficulty arises when wj+1 is zero or 
close to zero. One observation leading to LAL is that forming the subsequent 
r1.I and sj+I for building up bases of the Krylov subspaces uses only the 
directions of Pj+l and qj+l , i.e., those of rj, sj, rather than the vectors Pj+l, 
q1+1 themselves. Specifically, in LAL, rj+1 and sj+l are computed from rj 
and sj before forming Pj+l, qj+l by a formula similar to (1) and (2). Then 
Pj+I, Pj+2 E span {rj, rj+1} and qj+ I, qj+2 E span {sj, sj+I} are constructed 
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appropriately such that they are biorthogonal. This construction involves a 
factorization of a 2 x 2 matrix and can be understood as using a 2 x 2 block 
pivot. In the version of LAL worked out in [23], qj+1 and qj+2 are chosen as 
normalizations of sj and sj+l as usual. The subsequent vectors Pj+3, ... , Pm 
and qj+3, . . ., qm depend on rj, rj+1, sj and sj+1 and can be recovered from 
the corresponding p's and q's. So LAL involves a local change of the two basis 
vectors Pj+1 and Pj+2, ar;d the other basis vectors remain unchanged. 

A limitation of the algorithm is that it is not always possible to obtain bet- 
ter denominators wty+1 = cos(pj+1+, qj+1) and Wj+2 = cos(pj+2, qj+2) . In- 
deed, the best possible denominators are determined by the angles between 
span {rj, rj+I } and span {sj, sj+I } . For example, if one of the angles is a right 
angle, i.e., the 2 x 2 block pivot is singular, then one of the new denominators 
must be zero (see [23]). In such a case, it was suggested to use a t x t pivot, 
or equivalently to include t vectors in the subspaces, say, r1, ... , rj+t1l and 

Si, ... , Sj+t-l, and then choose Pj+i, ... , Pj+t and qj+1, ... , qj+t from the 
two subspaces respectively. However, the implementation becomes very com- 
plicated without there being any guarantee of success. A possible contingency 
is incurable breakdown, i.e., all block pivots are singular (see [23, 27]). In such 
a case, all Ritz values are eigenvalues, by the mismatch theorem of Taylor, but 
this is known at the cost of forming all the block pivots. 

We also remark that the LAL process is equivalent to applying the Gram- 
Schmidt method to a slightly modified Krylov basis of {PI, Ap1, . .. , Am1p I} 
with A'-1pl, Alp1 replaced by two linear combinations of them. 

2.3. Nongeneric Lanczos algorithm. The approach in [10] uses the theory of 
formal orthogonal polynomials. The matrix A and two initial vectors Pi, q1 
define, on the space pn of polynomials of degree not exceeding n - 1, a formal 
inner product by 

(3) (h, g) = p*h(A)g(A)ql for h, g E pn. 

Then a monic polynomial fi of degree i is called a true formal orthogonal 
polynomial (true FOP) if (f', xi) = 0 for all 0 < j < i. Because (3) is not a 
true inner product, a true FOP may not exist, and even if it exists, it may not 
be unique. This prompts the classification of true FOPs as regular and irregular 
according to their uniqueness. An interesting result is that when no true FOP 
exists for a certain i, a so-called deficient FOP exists. 

It is well known that the pi, qi generated by the Lanczos algorithm in the 
generic case (i.e., without any breakdown) satisfy 

(4) Pi = fj1i(A*)Pj1_i, qi= fi- = (A)ql IT 

where fi-i is the (i - 1)st regular FOP and Hli, 'li are two scalar constants. 
The occurrence of breakdown at step j corresponds to nonexistence of the 
jth regular FOP. Generally, an ith FOP fi, though it might be irregular or 
deficient, always exists, and then defines pi, qi through (4). Furthermore, a 
recurrence formula for FOPs has been found, which in turn gives a recurrence 
among pi, qi . This leads to the nongeneric Lanczos algorithm of [10, 11]. 

Clearly, pi E Ki(p1) and qi E Ki(qj). The formal orthogonal property of 
FOPs ensures that the p's and the q's are block biorthogonal provided f,- 1 is 
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regular. A transformation of the basis vectors in each block makes the bases 
biorthogonal and recovers LAL. So, in theory, the nongeneric Lanczos algorithm 
differs from LAL by a local change of the bases in each block. However, it 
has been shown that the former is preferable to the latter in implementations, 
particularly when pivots of size greater than 2 are involved (see [8, 11]). For 
essentially the same reason as in LAL, the nongeneric Lanczos algorithm may 
encounter incurable breakdown. In terms of FOPs, this occurs when fn-l is 
not regular. 

2.4. Arnoldi algorithms. Another generalization of the symmetric Lanczos al- 
gorithm is the Arnoldi algorithm (see [1, 26] ). It uses a single Krylov subspace 
Km (ql) and generates an orthonormal basis of Km (ql) by the Gram-Schmidt 
method. Specifically, a basis {q1, ..., qn } is constructed by the following re- 
currence 

hj+,jqj+l = sj= Aqj - hjjqj - - hljql, 
where hij is chosen so that qj*+I qi = 5j+1, i for 1 < i < j + 1 . Because of the 
nonsymmetry of A, the coefficients hij are generally nonzero and all j terms 
will be present in the iteration. This significantly increases the computational 
cost and use of storage, which are crucial for large-scale problems. On the other 
hand, using only one sequence of vectors (i.e., a single Krylov subspace), the 
Arnoldi algorithm yields an orthonormal basis. In this regard, the algorithm is 
more stable. 

At step j, a j x j upper Hessenberg matrix is obtained and can be used 
to approximate some eigenvalues of the original matrix. As we will see in ?7, 
however, convergence is expected to be slower. Finally, we refer to [26] for 
more discussions on the Arnoldi algorithm. 

3. AVOIDING BREAKDOWN BY NEW-START 

The various methods presented in ?2 construct (block) biorthogonal bases 
of two Krylov subspaces. Clearly, the bases constructed depend on the initial 
vectors. In particular, the best (block) pivots are essentially fixed. The difficulty 
with the incurable breakdown suggests that the Krylov subspaces may be wrong 
in the sense that they do not match well. In such a case, any modification in 
the recurrence would not help, and it is the Krylov subspaces that need to be 
changed. 

An old strategy is to abandon the computation and start over with new initial 
vectors. Unfortunately, there is no known method to make the new choice a 
better one, not to mention the waste of computation. 

The new idea in this paper is to replace one of the two Krylov subspaces by a 
sum of two Krylov subspaces. When a breakdown occurs at step j, instead of 
using the normalization of rj-I for pj, as in the Lanczos algorithm, we choose 
a new vector for pj, which we call a new-start vector. With this new pj, we 
replace the Krylov subspace Kn(pi) by an appropriate sum of Kn(pi) and 
Kn (p) . Obviously, the Lanczos three-term recurrence no longer works, but the 
Gram-Schmidt biorthogonalization method is still applicable for the new pair 
of subspaces. Moreover, it turns out that the basis of the new subspace can 
be arranged in such a way that the biorthogonalization step will collapse to a 
four-term recurrence. 
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Let e < 1 be a threshold parameter for breakdown, and let rj -I and sj -I be 
generated by (1) and (2). From now on, breakdown is defined by E, i.e., we say 
that a breakdown occurs at step j - 1, if the pivot I1j = I cos(rj1I, sj- )I < e 
When it occurs, let qj = sj- / I Isi_ll and choose pJ to be any vector satisfying 
p qi = 3ij for 1 < i < j - 1 and WIl = cos(pj, qj)l > e (assuming the 
existence of pJ). We call pj a new-start vector. 

We now describe how to continue the construction of the subsequent basis 
vectors after the introduction of the new-start vector pj . First, pj+1 and qj+l 
can be generated by 

(2) *= = --- 

Y+j+l = rj = p>A j-1PI-2 -aj-P>l -YP> 

8j+ l qjl = Sj = Aqj - ojqj - Yjqj-l, 

where aj = p7Aqj, yj = p*_,Aqj and y(2)1, fQj+I are chosen such that 
i i ~~~~~~j+1 

p+ Iqj+I = 1. Clearly, the definition of aj, yj ensures local biorthogonal- 
ity. Furthermore, it can be checked that qj+1 is orthogonal to pi, and Pj+1 is 
orthogonal to qi, for 1 < i < j. Note that at this stage an additional term is 
added to the formula for the p's but not for the q's. However, from step j + 1 
until the next breakdown, both formulas have an additional term. We have the 
following four-term recurrence for Pl+i , q+ I (1 > i): 

y(2) 
* = r = p* A 

(+)lPlr7 p 1= A - fi-IPI*2 - al-IP>1l 
- 

YIPP, 

fl+lql+l = s, = Aq - alql - ylql-l - y(2)ql 2 

where al, y, ,y(2) and 13i+? are chosen similarly as above. Again, it can be 
verified that the vectors obtained are indeed biorthogonal. 

When a further breakdown occurs, a similar recurrence with five terms can 
be used and so on. In general, y(k) will be introduced into the recurrence when 

there are k - I breakdowns. To be consistent, we rewrite yj as y'l) . Also, to 
distinguish between the two formulas for Pj+l and qj+l immediately after a 
new-start, it is necessary to introduce two index parameters k and k', which 
are related to the number of consecutive breakdowns. The following is the main 
algorithm of this paper. 

Algorithm 3.1. Input a breakdown threshold parameter e and two initial vec- 
tors Pi and q, with llq 112 = 1 and p*ql = 1 . Initialize k = kl = k= 1 
6k = 0 and Po = qo = 0 and IA = 0. 

For 1= 1, 2, 3, ..., m- I do 
1) k' = k" (this defines k' = k'(1)); 
2) a, = p*Aq1 and y(i) = p7*Aq1 for 1 < j < k'l 

3) s(l, k') = (A - al)ql - j1=l ql-j 
4) 8I1+? = IIs(l, k')II; 
5) If fli+I = 0, stop (emergence of a right invariant subspace); 

else, qj+I = s(l, k')/fl,1+; 
6) k = k"l= k' + k (this defines k = k(l)); 

7) r*(l k") PI*_ k"1+l(A- a1-k"1+))-,81-k?+lP*k"_-jZk_1ly(k"+j+l 

Pl-k"+j+1 



186 QIANG YE 

8) If l1r(l, k")II = 0 and k" = 1, stop (emergence of a left invariant 
subspace); 
If j1r(l, k")II = 0 and k" > 1, then k" +- k" - 1 and goto (7); 

9) If Jr*(l, k"')q1+1J/ Jr(l, k")1 > , 
Pi+1 = r(l, k")/r*(l, k")ql+l and 3k = 0; 

else 
choose a nonzero Pi+i by newstart and 3k = 1; 
(i.e., p*lqj = 1+,j for 1 <?j< + 1) 

end if. 
Two index functions are generated with k = k(l) defined by the value of k at 
6) and k' = k'(l) defined by the value of k' at 1). 

We add some remarks to help in understanding the algorithm. 

Remark 1. The two index functions k(l), k'(l) are related to the number of 
successive breakdowns that occur at step I and control the number of terms 
involved in the recurrence with k for the p's and k' for the q's. One has 
k(l) = k'(l) + 3k (see 6)) with 3k = 0 or 1 depending on whether or not 
a breakdown occurs at step I - 1. This difference is due to that between the 
recurrences for pj and qj immediately after a breakdown. Also note that, at 
step 1, the value of k" is initially equal to k(l) at 6) but might be decreased 
at 8) . Then the value of k" at the end of 8) carries to step / + 1 and defines 
k'(l + 1). Therefore, k'(l + 1) < k(l). In particular, if k'(l + 1) < k(l), then 
r(l, k") =O for k'(l + 1) + I < k'l < k(l). 

Remark 2. For 1 < k < /, we define 

(5) s(l, k) = (A - al)ql 1 - *M*_- y (k)ql-k 

r*(l, k) =P7ik+1 (A- al-k+1) ) l-k+lPI 

(6) Y1-k+2P1-k+2 - Yi Pi 

At step 
/ 

of the algorithm, y(1) ... I Y ) are defined at 2). Then the use 
of s(l, k'(l)) at 3) is justified. Note here that s(l, k'(l)) depends on / only. 
Also, r(l, k") for k'(l + 1) < k" < k(i) are used at 7) and they are well defined 
owing to Lemma 3.4 below. 

Remark 3. If s(l, k') = 0, then Aq1 E span {ql-k', ..., qi}, which implies 
that span {qi, q2, ... , ql} is a right invariant subspace. If r(l, k) = 0 with 
k > 1, then A*pl-k+I E span {Pl-k, . . ., Pl}, which is not sufficient to imply 
A*-invariance of span {Pi, ... , pl}, as A*pl-k+2 may not be in this subspace. 
It is natural then to consider r(l, k - 1) that uses A*pl-k+2, and continue 
until r(l, 1) = = r(l, k) = 0 when a left invariant subspace is obtained. A 
rigorous proof will be presented in Corollary 3.6. 

Remark 4. If r*(l, k)q1+1/JJr(l, k)112 < ,, abreakdown occurs. Then we choose 
a new-start vector P1+1 by a procedure newstart (see ?5). Because of the new- 
start process, k, k', and k" will be increased by 1 after the next q's have 
been formed. This is done by setting an increment 3k = 1 and add it to k 
later at 6). 
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Remark 5. It can be easily checked that r*(l + 1, k + 1) = r*(l, k) - yj+ jpj+ I 
If a breakdown occurs at step I, then r(l, k) formed there is not used, but it can 
be used at the next step in forming r(l + 1, k + 1) to save some computations. 

Remark 6. As in the Lanczos process, various normalizations exist, which, how- 
ever, are theoretically equivalent. We have chosen to normalize the vectors so 
that IqI II = 1 and p7 qi = 1 for the sake of theoretical simplicity. 

From Remark 1, we have the following 

Lemma 3.2. For / > 2, there holds 

k'(l) ? k(l) < k'(l) + 1 < I and k'(l + 1) < k(l). 

We also note that, at each step, k(l) and k'(l) can increase at most by 1, 
i.e., k(l + 1) - k(l) < 1 and k'(l + 1) - k'(l) < 1. This immediately leads to 
the following property. 

Lemma 3.3. If i > l, then k(i) - k(l) < i - l and k'(i) - k'(l) < i - l. 

The definition of r(l, i) depends on y(1) for 1 < j < i - 1 . The next 
lemma shows that r(l, i) is well defined for 1 < i < k(l) at step 1. 

Lemma 3.4. At step I of Algorithm 3.1, yU)J+ is definedfor 1 < i < k(l) and 
1 < i - 1. 

Proof. First, I > l - i + j + I > 2. By Lemma 3.3, k(l) - k(l - i + j + 1) < 
i-j- I. So, k(l-i+ j+ 1) > k(l) - i+ j+1 > j+ 1. Hence, j < 

k'(l - i + j + 1) by Lemma 3.2, and y(i) is defined at step (I - i + j + 1) 
of the algorithm. ai 

Let Tm be the m x m matrix whose Ith column for 1 < I < m is 

(0 0 y (I) y(l) Cejt, g1+1, ?, 
** )T' 

where a, is in position 1. Then y(k(l)) is in position / - k'(l) and 

ta1 Y1) 0 ... 0 

/32 R2 

1y) 0 ... 0 
(1) (2) fl Rj Yj+1 Yj2+2 ... 

(7) Tm = af 1)1 2) I(k') 

(1) ( )( 
' 

cei+ Yi+l Yi(+)2 YM 

(2) 
/+i?2 ai+2 Y( 

(1) 

Jim am 

where we note that by Lemma 3.3 

1 + 1 - k'(l + 1) > I - k'(l). 
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Because the first nonzero entry of the Ith column is in position I - k'(1), it is 
easily seen that if 1 < i < m - k'(m), the ith row of Tm is 

(8) (? * Y(+) I y(2) , y(1 1) I , . ), 

where / is the integer satisfying I - k'(l) < i < / + 1 - k'(l + 1), and if 
m-k'(m)<i?m,the ithrowof Tm is 

(9) (0,., 0, l3 ai, Y2ljI Y22)2 y(M-i)) 

In both (8) and (9), ai is in position i. 
The next theorem summarizes the results of Algorithm 3.1. Recall that ei, m 

is the ith column of Im . 

Theorem 3.5. Algorithm 3.1 produces biorthogonal sequences PI , P2, * , Pm 
and qi, q2, ..,qm, i.e., p*qj = 6,j (1 < i, j < m) and lqill = 1, and a 
matrix Tm of (7), such that 

(10) AQm = QmTm s(m, k')e*,m 

and 

11) PmA TmPm + em-k+I mr* (m, k) + em-k+2,mr* (m, k- 1) 

+*- + em, mr* (m, 1), 

where k' = k'(m), k = k(m) and Pm = [PI, P2, ...,Pm], Qm = [q, q2,. 

qm]. 
Furthermore, 

( 12) Pm*s(m, k') = Q* r(m, k) = Q* r(m, 1 ) = O. 

Proof. For 1 < I < m, by the definition of s(l, k) (see (5)), 

k' 

(13) Aq1 = s(l, k'(l)) + alql + E y(i)ql-j- 
j=l 

If / < m - 1, then s(l, k'(l)) = flI 1qj+1, and hence 

k' 

Aq, = /3l+lql+l + alql + E YS ql-j, 
j=1 

which together with (13) yields (10). 
In defining Pi+i , as well as k'(1 + 1) and k(l + 1) at step 1, there are three 

cases. 

Case 1. r(/, j) = 0 for i < j < k(/) and r(/, i) :# 0 for some i ( 1 < i < k(l)) 
with 

r*(l, i)ql+llllr(l, i)JI > c. 

In this case, no breakdown is encountered and P1+1 = r(l, i)/r*(l, i)ql+l. Then 

k(l + 1) =k'(l + 1) = i < k(l). 

Let 
r1 , k )) (l+ 1)ql . 
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Hence, for (i=) k(l + 1) < j < k(l), 

P7_1+1A = fli-i+aPjl* + + .+ * + Y(-l)p* + r*(1, j) 

(14) = fl-.+lP/_] + **+ (j-1)pU + (k(1l 0)p) if] j k(l+ 1), 

Case 2. r(l, j)=O for i<j<k(l) and r(l,i)# Oforsome i (1 <i<k(l)) 
with 

r*(l, i)qj+j1jjr(1, i)JI < e. 

In this case, a breakdown is encountered and p1+1 is formed by newstart. As it 
is assumed that i < k(l), we have 

k(l + 1) = k'(l + 1) + 1 = + 1 < k(l). 

So, for k(l + 1) < k(l), we have r(l, j) =O, i.e., 

(15) p7_1+1A = #i-j+lp7 j + ai-j+lp*1j+I + *. + 4lP)p 

Case 3. r(l, k(l)) : 0 with r*(l, k(l))qj+I/ jlr(l, k(/))I < . Again, in this 
case, a breakdown is encountered and Pl+ 1 is formed by newstart. Then 

k(l+ 1) =k'(l+ 1)+ 1 =k(l)+ 1. 

Interestingly, we have 

(16) 1-j+l f(l- 1)-k(l) +1 if jk(l + 1), 
(16) li+l -{/(1+1)-k(l+1)+1 if j=k(l). 

Now, it can be easily seen that 

{1, 2,., m - k(m)} 5 U {l-k(l)+ 1,..., l-k(l+ 1) + 1}. 
1<l<m- 1 

Because of (16), the union can be restricted to those I in cases 1 and 2, i.e., those 
satisfying k(l + 1) < k(l) . So, for any i with 1 < i < m - k(m), there are 1, 
j with 1 < I < m - I, k(l + 1) < < k(l) such that i = I - j + 1. Then p*A 
can be written as in (14) or (1 5). If it is (14), then either I - k'(l) < i < I + 1 - 
k'(1 + 1) (when j > k(l + 1)) or I + 1 - k'(l + 1) < i < I + 2 - k'(l + 2) (when 
j = k(l + 1)) . If it is (15), then I-k'(l) < i < I + 1-k'(l + 1) . A comparison 
with (8) shows that we have obtained the ith row of (11) with y(+) possibly 

replaced by y(l+) . We will show y(k(l+1)) (k'(l+1)) , and therefore the first 
m - k(m) rows of (11) hold. Furthermore, for m - k(m) + 1 < i < m, by (6), 

p*A = aip* + **+ y(Mi)p + r*(m, m i+ 1). 

This verifies the last k(m) rows of ( 11) and thus (1 1). 
Next, we show the biorthogonality and ( 12). First we prove ( 12) by assuming 

p7*qj = cij for 1 < i, j < m. For 1 < i < m - k'(m) - I < m - k(m), one has 
i = I - j + I with 1 I < m - 1 ,k(l + 1) < j < k(l). If I < m - 2, then 

p7s(m, k'(m)) =p7Aqm = p7*1Aqm = 0, 

where we use (14) and (15). If / = m - 1, then m - j =i < m - k'(m) - 1, 
i.e., k'(m) + 1 < j < k(m - 1). So p7* j+A is given either by (14), where 
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k(m) = k'(m) < j, or by (15), both of which lead to p71j+,Aqm = 0. Hence, 
p7s(m, k'(m)) = 0. For i with m - k'(m) < i < m, it follows from the 
definition of am and Ym) that p7s(m, k'(m)) = 0. So we have shown that 
Pms(m, k'(m)) = 0. 

On the other hand, let 1 < i < k(m). For 1 < j < m - i-, 

r*(m, i)qj =p -i+1Aqj = 0, 

and for j = m - i, 

r* (m, i)qj = p*-i+1Aqm-i -m-i+1 = fm-i+1- fm-i+1 = 0, 

where we note that Aqj is given by (13). For j = m - i + 1, 

r* (m, i)qj = p* -i+jAqm-i+l - am-i+1 = 0. 

For m > j ? m - i + 2, we have j - m + i - I > 1. Also k(m) - k(j - 1) < 
m- j+ 1. We have j-k(j - 1) < m- i+ 1, andhence 

r* (m, i)qj = p* -i+ Aqj _ Y(j-m+i-1) = (j-m+i-1) - Y(J-m+i-1) - 0. 

In summary, r*(m, k)Qm = 0 for 1 < i < k(m). 
Now, Pm+1 (qm+l , resp.) is obtained from the normalization of r(m, i) or 

from newstart (from the normalization of s(m, k'), resp.). Then pm+ I = 

p qm+l = 0 for 1 <j < m. An induction argument yields the biorthogonality 
and hence (12). 

Finally, we have for k' = k'(l + 1) 

-(k ) = s* (, k')ql+l = p l Aq1+1 = y(k') 

This completes the proof. n 

An immediate consequence of the theorem justifies the claims of Remark 3. 

Corollary 3.6. If s(m, k'(m)) _ 0, then span{ql, ... , qm} is a right invariant 
subspace. If r(m, k(m)) = =r(m, 1) = 0, then span{pl,..., pm} is a left 
invariant subspace. 
Proof. If s(m, k'(m)) = 0, then AQm = QmTm by (10), which shows that 
span {qi ,.. ., qm} is a left invariant subspace. The rest is proved similarly. l 

4. PROJECTION MATRIX 

The algorithm presented in the previous section constructs biorthogonal bases 
and, at the same time, a banded upper Hessenberg matrix Tm in the form of 
(7). We note that the first nonzero entry of the Ith column of Tm is in position 
I - k'(l). By Lemma 3.3, 1- k'(l) < i - k'(i) for i > 1. Thus, Tm can also 
be characterized as the Hessenberg matrix having the following structure: 

1 m-I 

(17) TM (T11 0 1-k'(l+1) (17) Tm 
~~~~T21 T22 m-l+k'(1?1)' 

The matrix Tm is indeed a skew projection of A onto the column subspaces 
of Pm and Qm. 
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Theorem 4.1. Under the hypotheses and notation of Theorem 3.5, 

(18) Tm= Pm*AQm. 

In particular, Pn = Q- 1 and 

(19) Tn =Q'AQn. 
Proof. By the biorthogonality, Pm Qm = Im . Then by (12) of Theorem 3.5, 

Pm A Qm-Pm Qm Tm + Pm s (m, k (m)) = Tm. 

In particular, when m = n, then PnQn = In, so Pn - Qn1 and hence (19) 
holds. n 

If the algorithm is carried out to the full n steps, we obtain a similarity 
reduction of A to the condensed form T, which is somewhere between the 
tridiagonal form of the nonsymmetric Lanczos algorithm and the upper Hessen- 
berg form of the Arnoldi algorithm. Without restricting ourselves to orthogonal 
bases, we achieve a more condensed form than the Hessenberg form. This is 
particularly important for the convergence behavior (see ?7). On the other hand, 
relaxing the tridiagonal form of the Lanczos algorithm, we gain control over the 
magnitude of the pivots and hence the quality of the bases. 

We point out that a method can be developed in a straightforward manner 
to reduce A to Tn of form (7) through a sequence of elementary similar trans- 
formations. Again, by relaxing the condensed form, the magnitude of pivots 
can be controlled. Some discussions on the similarity reduction can be found 
in [13, 17]. 

An eigenvalue 0 of Tm is called a Ritz value. If u, v are left and right 
eigenvectors of Tm, respectively, i.e., 

u*Tm = Ou*, TmV = Ov, 

then 

(20) x=Pmu and yV=QmV 

are called left and right Ritz vectors, respectively. In particular, (0, u*, v) is 
called a Ritz triple. 

Ritz values can be used as an approximation to the eigenvalues of A. An 
interesting point of the algorithms of this type is that good approximations to 
eigenvalues can be obtained from Ritz values for m << n. This makes it a 
powerful method for large-scale problems. An analysis of convergence will be 
presented in ?7. Here, we discuss the computations of Ritz values. 

An important issue in our method is the efficient computation of eigentriples 
of the projection matrix. Since Tm is an upper Hessenberg matrix, the QR 
algorithm can be used to compute the eigenvalues and eigenvectors of Tm. 
However, one step of QR iteration will destroy the sparseness structure of Tm . 
Therefore, the QR algorithm may not be the best choice. An alternative to 
the QR algorithm is the LR algorithm (cf. Chapter 8 of [28, ?8.3]). A typical 
single-shift step of the LR algorithm is to compute the LU decomposition of 
Tm - cI and form UL + cI as the next iteration matrix (this can usually be 
performed by a so-called "bulge chasing" process). The next theorem shows 
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that the structure of Tm (i.e., the envelope of Tm) is invariant under the LR 
algorithm. 

Theorem 4.2. Let Tm be a matrix of theform (7) and Tm - crI = LU be an LU 
decomposition with some shift a. Then UL + cI has the same structure (7) as 
TM. 

Proof. The matrix Tm - arI has the same structure as Tm . Then L is a lower 
bidiagonal matrix, i.e., lij = 0 if j > i or j < i - 1. By comparing the rows 
of Tm - cI and LU from the first to the last, we see that U has the same 
structure as Tm . Multiplying U on the right by L is to add a multiple of the 
(j + 1)st column to the jth column, giving a form of Tm. Clearly, UL + cI 
yields the same structure as T m. El 

The theorem shows that the LR algorithm preserves the sparseness structure 
of Tm and is potentially an efficient method for Tm . It is well known, however, 
that the LR algorithm can break down for certain shifts. Even so, it has been 
suggested that the LR algorithm is a competitive alternative to the QR algorithm 
for tridiagonal matrices (see [17], for example), and we expect the same in our 
context. 

5. NEW-START PROCEDURE 

One of the key steps in our algorithm is the new-start procedure at 9), i.e., 
the choice of a vector for Pl+I such that p7+ Iqi = (1+ 1 < i < I + 1) as well 
as IwuI = I cos(pl+I, qj+11) > e . Clearly, if e = 0, the choice always exists, and 
we can always conquer the exact breakdown. For c > 0, however, the choice is 
not always possible. Indeed, the best pivot is given in the next theorem. Here 
we remark that an extreme case is c > 1, for which the choice never exists. 

Theorem 5.1. Let q1, ..., ql, q1+1 be linearly independent vectors of norm 1, 
and let 

SI = span{ql , q.}. 

If qj1+ = u + v, where u E SI and v E S-L, then 

max I cos(x, ql+1) I = liv II. 
xESL 

Proof. For any x E S,l, we have 

I cos(x, ql+?)l = lx 
- 

II 

which is maximized when x = v. o 

The best possible pivot at step I is llvii and finding v requires forming and 
solving an I x I linear system. Note that liv I is indeed the sine of the angle 
between q1jI and the subspace S . Therefore, a small IlvII suggests that q+ I is 
nearly linearly dependent of q1, . .. , q1, and also S1 is close to a right invariant 
subspace. The precise measure of the invariance of SI, however, depends on 
iis(l, k)ii as well. 
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Theorem 5.2. Under the hypotheses and notation of Theorems 3.5 and 5.1, we 
have 

min IIAQ1 - Q, Tjj = jjs(l, k') jj llv j, 
T 

where T is an / x / matrix. 
Proof. By Theorem 3.5, 

AQ1 - Q1 T = Q1 (T1 - T) + s(l, k')e71. 

Now s(l, k') = jis(l, k')jjql+l = (is(l, k')jju + jis(l, k')jjv. Therefore, the last 
column of AQ1 - Q1T is ui + IIs(l, k')jlv, where ui E SI and IIs(l, k')Ilv E Si. 
Hence, 

jIAQ, - Q,7TIj > jU^ + jls(l , k')jllv 1 ? jls(l , k')jj llvjj. 
Clearly, equality is achieved by T = T1 + R1 with jjs(l, k)jjuep / = Q,R1. The 
proof is complete. o 

The theorem shows that jjs(l, k') jj IIv jj measures the invariance of SI . Yet 
how it bounds the eigenvalue approximation is not clear in the nonsymmetric 
case. Also, from the proof, we see that the minimum over T may not be 
achieved at T1. 

5. 1. Random new-start. A natural way to choose a new-start vector other than 
finding the vector v is to pick up a random vector x and then orthogonalize it 
against q1, q2, ... , ql. In view of the existence of the dual biorthogonal basis 
PI , P2, * , pi, this can be achieved very conveniently by 

r = x - aelp, - - - -- api , 

where as = q x for 1 < i < 1. If Icos(r, qj+ 1) > 6, normalizing r yields 
Pl+I . Otherwise, we try another random vector. As we observed, there may not 
exist a vector satisfying the given threshold condition. So after a certain number 
of unsuccessful trials, we decrease e . The following is a basic algorithm of the 
subroutine newstart: 

Algorithm 5.3. For J = 1, 2, ... , Jmax do 

1) generate a random vector x; 
2) for i=1, 2, ..., l do 

x =x - (q*x)pi; 
3) if I cos(x, q+1)j > ? , then Pi+I = x/x*ql+I and exit. 

Of course, more sophisticated devices can be employed in place of 2) to deal 
with some difficulties associated with the naive implementation (see [15, ? 5.2], 
for example). 

The new-start procedure requires the storage of all preceding vectors pi, qi . 
This cost of storage is critical when the size of the matrix is large. Unlike 
the Arnoldi algorithm, however, this difficulty occurs only during the new-start 
procedure and can be overcome by storing some admissible new-start vectors 
in advance. For example, we can compute some admissible new-start vectors 
simultaneously with the iteration by choosing a set of random vectors at the 
beginning and orthogonalizing them against q1 whenever a new q1 is formed. 
Then, when a breakdown occurs, the vectors in the subspace spanned by these 
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vectors are candidates for new-start vectors. In particular, random linear com- 
binations of the vectors can be used as trials. 

A method presented in ?5.3 will enable us to increase the number of admis- 
sible vectors. Then the number of vectors to be stored in advance need not be 
large. 

5.2. New-start without reorthogonalizaion. A probably better way to avoid the 
cost of storage is not to do orthogonalization in the new-start phase. 

It is well known that, for all Lanczos-type methods, the orthogonality will 
be lost after certain iterations in finite arithmetic (see [28, ?6.32]). Usually, 
the methods can be implemented with or without reorthogonalization (cf. [21, 
Ch. 13] and [6, Ch. 4]). The same situation applies to Algorithm 3.1. When 
a reorthogonalization is adopted, then the new-start procedure is just a step of 
rebiorthogonalization and does not incur any extra cost. On the other hand, 
when no reorthogonalization is used, we propose to do the orthogonalization 
in the new-start procedure only for local vectors, because the biorthogonality 
among the vectors are lost anyway. In this implementation, a new-start based 
on random vectors often leads to a small pivot, since only a few vectors are 
orthogonalized against. We suggest to start from qj rather than a random 
vector and then orthogonalize it against local vectors. 

The theoretical basis for the implementation without reorthogonalization is 
that, even when the orthogonality is lost, equations ( 11) and (10) remain valid 
(see [25] or [21, ?13-4]). It is easy to see that equations (11) and (10) still 
hold if the orthogonalization is not adopted in the new-start procedure. This 
again justifies the implementation of the new-start without orthogonalization. 
Finally, we point out that the numerical examples in ?7 show that this is indeed 
a practically effective way to implement our algorithm. 

5.3. New-start subspaces. The methods presented in ?5.1 are based on orthogo- 
nalization, which leads to the problem of storage space. Although ?5.1 suggests 
that this can be overcome by storing some candidate vectors, it is difficult to 
decide on the number of such vectors required at the beginning. 

When there is a new-start vector on hand, more admissible vectors can be 
obtained from the Krylov subspace generated by the vector. The choice of the 
Krylov subspace is shown in the next theorem. Note that this property is also 
used in LAL [23]. 

Theorem 5.4. Let rO be a vector orthogonal to SI = span{q, ...q , ql}, where 
q1, q2, ... , q1 are generated by Algorithm 3.1. Let 

r7 1 = r7A - Sip7 for i = 0, 1, 2, ..., 

where Ci = r*Aql. Then ri is orthogonal to SI for i = 0, 1, 2,. 
Proof We prove this by induction. Assume ri I SI for some i. Then, for 
1 < j < 1 - 1, we have Aqj E SI by Theorem 3.5. Hence, 

r7*+q1 = r*Aqj = 0. 

Also, r7* q1 = r7*Aq1 - Si = 0 . Thus, ri+I I SI . The proof is complete. o 

Note that the computation of ri does not require storage of qi . So, when we 
have one candidate ro of the new-start vector, any vectors in span {ro, r1, . .. } 
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can be used as candidates. This significantly increases the number of vectors 
available. For example, in the strategy of ?5.1, we only need to store a few 
vectors, and when a breakdown occurs, more vectors can be constructed in this 
way. 

In particular, an admissible new-start vector at step / is r(l, k) (1 S1). Then 
a sequence of admissible vectors ri can be generated from rO = r(l, k). The 
new-start vector can be chosen to be a random linear combination of ro, r1, . . . 
and choosing r, leads to LAL (see the next section). 

6. SOME SPECIAL CASES 

There are a few special cases of Algorithm 3.1 that are of particular interest. 
For example, if the new-start vector is chosen in a special way, Algorithm 3.1 
yields the look-ahead Lanczos algorithm of [23]. On the other extreme, if e = 1 
and P1 = q1 , then the two sequences of the basis vectors are necessarily the 
same, and we recover the Arnoldi algorithm. We discuss symmetric matrix 
pencils as .a special nonsymmetric problem and a symmetric version of the 
algorithm involving two-sided new-start will be described. Also, we will present 
some comparisons between the new algorithm and LAL in this section. 

6.1. Look-ahead Lanczos algorithm. Assume the regular Lanczos algorithm 
breaks down at step j (see ?2.1). Let rO = r(j, 1) and rt = r*(j, 1)A - Clp* 
as in ?5.3. Now, if r*qj+l 7& 0, then r, can be chosen as the new-start vector 
and P?+l = rllr*qj+l as is done in [23]. 

We now proceed with the construction of the subsequent vectors. The vector 
qj+2 is generated as usual by normalizing s(j + 1, 1), but with k(j + 1) = 2; 
the vector Pj+2 is obtained by 

72)2p2 =r*(j +1,2)=p*(A - aj) - fBJI_ - Yi+'P?i = 
- Y?iP?+i 

Then Pj+3 is determined by r(j + 2, 2) and qj+3 by s(j + 2, 2). Furthermore, 
it is easily seen that 

r(j + 3, 2) E span{pl, ... PJ+31} 

and, by Theorem 3.5, 

r(j + 3, 2) 1 spanfql, q, +3, 

Using biorthogonality, we have r(j + 3, 2) = 0 and k is therefore decreased 
to one. Hence, the subsequent p, for I > j + 4 are formed by r(l - 1, 1), 
i.e., through the regular Lanczos iteration. A direct comparison with [23] shows 
that what we obtained is exactly the 2 x 2 block case of the look-ahead Lanczos 
algorithm. 

The more general version of LAL uses a factorization of a t x t block pivot 
and is also a special case of Algorithm 3.1. To be more specific, assume that the 
LU decomposition with pivoting is used in constructing pj+ , ... , Pj+t and 
qj?+ . *, qj+t in LAL. Then 

pj+,** ,Pj+t EKj+t(pl) and qi EK,(ql) for j+ I < i <j +t 

If we apply Algorithm 3.1 with Pj+1, ... , Pj+t as t consecutive new-start vec- 
tors, then we obtain the same q+ .. , qj+t, since qi (j + 1 < i < j + t) is in 
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K,(ql) and orthogonal to Pi, ... pl- . Furthermore, 

r(j + t + 1, t), ..., r(j + t + 1, 2) cE kj+1+((p1) = span{pl, *, Pj+t+lI} 

and 
r(j + t + 1, t), ..., r(j + t + 1, 2) 1 span{q, ...,q+t+l. 

Hence, r(j +t?+ , t)= = r(j+t+ 1,2) = 0. Thus, k is decreased to 
1 and subsequent p,, q1 (for / > j + t + 2) are formed by r(l - 1, 1) and 
s(l - 1, 1), i.e., by the regular Lanczos recurrence. 

6.2. Arnoldi algorithm. The Arnoldi algorithm constructs an orthonormal basis 
and can be regarded as enforcing all the pivots to be one. If we impose that all 
pivots in Algorithm 3.1 are one, i.e., wi = 1 , then Pi must be a multiple of qi, 
which is not the case in general. So the algorithm will break down at every step 
and the new-start must be adopted to meet the criterion. The most convenient 
choice is pi = qi. Then wi = 1 and k'(l) = / - 1. Since Pi is always replaced 
by qi, the iteration for pi need not be carried out. The iteration for qi reads 

= s(l, k') = (A - al)ql1 - - y(k')q 

(A -) y(l)ql1- - y )ql 

in agreement with the Arnoldi algorithm. Note that the orthogonality among 
the q's follows from the biorthogonality, and Tm becomes an upper Hessenberg 
matrix. 

6.3. Symmetric pencils and two-sided new-start. In Algorithm 3.1, we adopt a 
new-start strategy for the left vector pi. The algorithm can be generalized 
further to allow new-start on both sides, i.e., for both Pi and ql. In that case, 
the formulae for s(l, k) and r(l, k) will be replaced by formulas combining 
the two. However, there is no obvious reason, in general, for doing this, since 
the projection matrix will not be in the upper Hessenberg form. On the other 
hand, the idea of two-sided new-start is natural in an effort to preserve symmetry 
for symmetric pencil problems, including the classical symmetric problem. 

An important class of the eigenvalue problems is the symmetric pencil prob- 
lem 

(21) Ax-=ABx, 

where A and B are Hermitian matrices with B nonsingular and (A, x) is 
an eigenpair. The eigenvalue problem (21) is equivalent to the problem for 
B-1A and is essentially nonsymmetric if neither A nor B is definite (see [29]). 
When we consider a numerical method for (21), it is important to exploit the 
symmetric structure. 

The Lanczos algorithm has been applied to B-1A in a symmetric fashion. 
By letting Pi = Bql, we have Pi = Bql for all 1; so the two sequences of 
vectors are reduced to one, and a symmetric compression pencil is obtained (see 
[20, 24, 29]). If B is indefinite, this symmetric version of the algorithm inherits 
the breakdown, i.e., when qj*Bqj -p*qj = 0. To overcome this difficulty, 
Algorithm 3.1 can be applied to B' A, but the new-start strategy is used only 
for pj and not for qj. Immediately, the symmetric relation p, = Bql is lost. 
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In order to maintain symmetry, therefore, it is necessary to apply the new-start 
to both pj and qj, and this can be carried out implicitly. 

Now assume that the algorithm breaks down at step j, i.e., w)j = qJ Bqj < c. 
We choose a new-start vector for qj and, simultaneously, pj = Bqj, which is, 
of course, not explicitly formed. Then qj+1 and qj+2 are constructed according 
to 

(2) + =- (1) (1) Y( qj+l = B lAqj - l-lqj-2 -j-lqj-I - y( qj 

and 
y(2) qj+2= B- 1Aqj - J)+ - 

qj+ 
- 

1 

where 
q~Aq (1) -q3*Aqj- (1I qj>1IA qj 

Yqj*Bqj q' Y = q)Bqj and Y2'l = qj*+,Bqj+ 

It can be verified that qj+I and qj+2 satisfy the orthogonality. Then, qj+I for 
/ > j + 2 is generated by 

y(2) q+ B-Aql_l - (2) 
ql-3(-) (lql-2 - oI)-lql-l- ql . 

Note that the last recurrence is a combination of (6) and (5) and involves five 
terms. The recurrence produces a B-orthogonal basis {qi, . .. , q" } and a sym- 
metric pencil in a condensed form. When a further breakdown occurs, the same 
technique can be applied and a general algorithm can be derived. All other dis- 
cussions are similar to those for Algorithm 3.1 and are therefore omitted here. 

If B is positive definite or equal to I (i.e., the classical case), there is no 
difficulty of breakdown. Still we can apply this algorithm at some step j to in- 
troduce a new-start vector. The benefit of doing this is that the Krylov subspace 
is changed to a sum of two, which may be necessary in some cases. 

6.4. Comparisons. We have seen in this section that Algorithm 3.1 is closely 
related to some existing algorithms. In particular, we make some comparisons 
between Algorithm 3.1 and LAL here. The fundamental difference seems to 
be that Algorithm 3.1 introduces a new-start vector and hence changes the old 
Krylov subspace, while LAL does not. This difference appears in the following 
three aspects. 

First, LAL may encounter incurable breakdown, which is due to mismatch 
of the two Krylov subspaces. Algorithm 3.1 overcomes this problem by correct- 
ing an improper Krylov subspace. Although, theoretically, all Ritz values are 
eigenvalues in the case of an incurable breakdown, no eigenvector is obtained. 
This makes it difficult to use the information obtained to find the rest of the 
eigenvalues. Also, there is no easy way to detect an incurable breakdown nu- 
merically. Second, if the Lanczos algorithm is to be terminated at some step m 
(< n) as is usually the case, then LAL is confined to Km(pl) and may not be 
able to resolve a curable breakdown within step m. In contrast, Algorithm 3.1 
can freely choose a new-start vector from Cn (or kn(pi)). Finally, the sym- 
metric version of Algorithm 3.1 is new and of significance also in the classical 
symmetric case. 
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7. CONVERGENCE BOUNDS 

In this section, we present some theoretical analyses concerning the conver- 
gence of Ritz triples. In particular, we give generalizations of familiar results 
of the symmetric case, including residuals of the Ritz triples. 

7.1. Convergence analysis. For the nonsymmetric Lanczos algorithm, a conver- 
gence analysis was derived in [30] based on the tridiagonal structure, which 
generalizes the classical results for the symmetric case. The idea also applies to 
the structure of the projection matrix Tm of (7). We outline this analysis in 
this section. 

Let Algorithm 3.1 be carried out to full n steps, giving rise to the matrix Tn 
(see Theorem 4.1). We can assume that no breakdown occurs after step m, 
i.e., k'(l) < k'(m) for I > m. Write 

T 
(Tm E and F = (0 r k'(i) T 
\E Tnm} ~ Eo} k'(m) 

Let to = m - k'(m) and construct a strictly monotonically decreasing sequence 
li, till Iml = 0 for some m1 , by 

li = li- I - k/(li- I + 1). 

Obviously, m1 is uniquely determined by the function k'(l) , i.e., the sparseness 
structure of Tm and, if Tm is tridiagonal, m1 = m - 1 . The following theorem 
shows that Tni and Tim have essentially the same first row (first column, (1,1) 
element) for some i. 

Theorem 7.1. Assume lo > 11 >... > Im4 = 0. Then 

(22) Tnel,n =(T m) for i < m-1 

(23) e nT =(e* mTm, 0) for i < ml, 

and 

(24) e Tne, = e,mTmel,m for i < m + ml. 

Proof. Observe that (22) depends on the lower triangular part of Tn only and 
can be shown by the same proof as in [30] for the tridiagonal case. A detailed 
proof is omitted here. For (23), we first show that, for 1 < i < ml, 

TmE= (Ei) '< 

This is obviously true for i = 0; assume that it is true for i < ml - 1. Then 

Ti?IE Tm =?1 (0 K O 1+1 
TminE=TMEi ( m--, i Ei+lJ m-i,+1 

where Tm is partitioned according to (17) with I = 1i . Now clearly, e Tn = 

(e m Tm, 0), and if (23) is true for some i < m1 , then 
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So (23) is proved. Finally, for i < ml and j < m - 1 

e* nTn'+j+' e -e* =i T i e* .T.+j+ elnn 1, - , n n n l - 1,m m 1,m , 

where we use (23) and (22). This completes the proof of (24). o 

In the following, we derive an identity concerning the Ritz values, using 
Theorem 7.1. For the sake of simplicity, we assume that Tm and A are diag- 
onalizable, i.e., 

(25) Tm = S*ET and A = Z7*AZ1, 

where e = diag(0, .. ., Om), S* T = Im and A = diag(A, I .., An) , Z,*Z = 

In. Let S= (sij), T= (tij) and 

Z (r= [zr ) and Z1 - [z') ,z 

Then zir) ( z1), resp.) is the right (left, resp.) eigenvector of A. Letting 
X= ZrPn = (xij) and Y = Z1Qn = (Yij), we have 

(26) Tn = X*AY and X*Y = In. 

Note that xi, is the zY)-component of the initial vector Pi and Yii is the 
z1 -component of the initial vector q1, i.e., 

n n 

P1= xi ZY) and q,=E yil zi- 

Now substitute (25) and (26) into (24) to obtain 

er* 1X*AiYel,n = e*, mS*Ei Tel,m 

for any i < m + mi . Hence, for any polynomial f of degree not exceeding 
M + in1, 

el,nX*f(A)Yel = e*,mS*f(EO)Te ,m- 

Thus, 
n m 

Ef(Ai)xilyil = Zf(oi)il tii 

In particular, using f(x) (x - 61)h(x), we obtain the following theorem. 

Theorem 7.2. Assume 12I - 611 = minj 1)A - Oj I. Then for any polynomial h of 
degree not exceeding m + ml - 1, we have 

1 n m 

Ai' -0'= h( )xl lyl l t- 1( - 61)h(i)x,1lyil +E(Ol- )h(01)siltl) 

Some special polynomials, such as Chebyshev polynomials, can be used to 
give various bounds on Al - 01 as in [30]. Besides, bounds on Ritz vectors can 
also be derived from (23) and (22), as in [30]. 

A conclusion drawn from Theorem 7.2 is that the rate of convergence is 
proportional to m + ml - 1. From the definition of mIn, it is clear that ml 
is determined by the sparseness structure of Tm and hence by the number of 
breakdowns that occurred. This suggests that the more new-starts we encounter, 



200 QIANG YE 

the smaller is ml and thus the slower is convergence. While using the new-start 
stabilizes computational results, it slows down the convergence. This behavior is 
also confirmed in our numerical examples (?8). Hence, choosing an appropriate 
threshold parameter e becomes very important in implementations. 

7.2. Residuals of Ritz triples. Another important aspect of convergence con- 
cerns the residuals of Ritz pairs. For our algorithm, the residuals are given in 
the following theorem. 

Theorem 7.3. Let u and v be the right and left eigenvector corresponding to an 
eigenvalue 0 of Tm and x and y be the left and right Ritz vectors defined in 
(20). If U= (UI, U2, ...,Um)T and v* = (VI, V2, ...,vm), then 

(27) Ax - Ox = ums(m, k') 

and 

(28) y*A - y* 0 = Vm-k+l r* (m, k) 
+ Vm-k+2r*(m, k - 1) + + vmr*(m, 1), 

where k = k(m), k' - k'(m) are defined in Algorithm 3.1. 
Proof. Note that x = Pm u. Multiplying (11) by u, we immediately obtain 
(27). Multiplying (10) by v* leads to (28). u 

The theorem shows that the residuals are small if the components um and 
Vm_k+I, . . ., vm are small and s(m, k') and r(m, i) ( 1 < i < k) are bounded. 
Note that all these quantities are computable at step m, so the residuals can be 
computed without forming the Ritz vectors x and y . This indeed provides an 
a posteriori convergence criterion. 

We remark that the proof of the theorem uses only equations (1 1) and (10), 
but not biorthogonality. When the algorithm is implemented without orthogo- 
nalization (including the new-start process), equations (11) and (10) are valid, 
and so are (27) and (28). 

8. NUMERICAL EXAMPLES 

This section is devoted to numerical examples. The algorithm is tested for 
various choices of the threshold parameter e. The choice e = 0 yields the 
nonsymmetric Lanczos algorithm (note that no exact breakdown occurs numer- 
ically). We compare the cases e > 0 with the Lanczos algorithm. The interest 
here is in demonstrating the numerical behavior of Algorithm 3.1 rather than 
in efficient implementations. Of course, a careful implementation would very 
likely improve the performance reported here. 

It is expected that biorthogonality will be lost in finite arithmetic owing to 
cancellation. We use a full rebiorthogonalization device in our examples, except 
in Example 4, where the algorithm and the new-start procedure are run both with 
and without orthogonalization. The new-start strategy employed is described in 
??5.1 and 5.2. 

As is pointed out in ?4, the LR algorithm can be used to compute eigenvalues 
and eigenvectors of Tm. For reliability, however, we have adopted the QR 
algorithm here. 
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TABLE 1. Results of a serious breakdown in Example 8.1 

c=0. c = 1.E-3 c = 1.E-1 
i t), oi - l 1 i I oi - Ai : Z 0 - Ai 

1 lEO - * 1 LEO 5.1E-10 LEO -1.lE-13 

2 1.3E-1 1.3E-1 (2.7, -1.8)E-10 1.3E-1 (-1.1, -1.8)E-13 
3 -7.2E-3 -7.2E-3 (2.7, 1.8)E-10 (E-3)-1.5E-1 (-1.1, 1.8)E-13 
4 -1.8E-15 (E-15)1.1E-3 (-2.4, 6.0)E- 11 (E-3)-3.2E- 1 (4.6, -5.0)E- 14 
5 -1.8E-15 * 1.6E-2 (-2.4, -6.0)E-11 (E-2)-2.5E-1 (4.6, 5.0)E-14 
6 -3.1E-3 1.2E-3 -2.2E-12 -3.2E-1 -1.3E-13 

In the first two examples, the algorithm is run to the end providing all eigen- 
values. We compare the accuracy obtained for various thresholds e and list 
the pivots wi and the approximation errors ,j - Oi (in Tables 1-3). If a new- 
start occurs, we list the pivot for the new-start vector with the magnitude of the 
old pivot in parentheses. The influence of the magnitudes of pivots coi on the 
approximation and the stabilizing effect of the new algorithm are evident. 

Example 8.1. Our first example is taken from Example 1 of [23]. The 6 x 6 
matrix is 

1 0 
A= 1 0 

1 0 

< ~~~~1 O, 

and the initial vectors are P1I = q [1, 2, 3, 4, 5, 6]T . The eigenvalues of A 
are the sixth roots of unity. 

Table 1 lists the results for e = 0, 1.E - 3, l.E - 1 . The Lanczos algorithm 
(e = 0) yields a serious breakdown (a pivot of the magnitude E - 15), no 
approximation being obtained (represented by * in the table). The accuracy is 
clearly improved as e increases. 

Example 8.2. The following matrix comes from Example 5.13 of [14], 

(B 2B 
0 

A= 4BB 3B) B= ( 1 . 

lo-, 0) 

The eigenvalues of A are (see [14]) 

Ak= 0.5exp(2kni/5), k = 1, 2,..., 5, 

Ak =-0.lexp(2k7i/5), k = 1, 2, .., 5. 

In this example, the two initial vectors are chosen to be different and random 
and the algorithm is run to full 10 steps. 

The results for two pairs of initial vectors are listed in Tables 2 and 3 for 
e= 0., 5.E - 2, 1.E - 1, and c = 0., 1.E - 2, 1.E - 1, respectively. Again, 
the accuracy is improved by increasing e . 
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TABLE 2. Results for the first pair of random initial vectors in 
Example 8.2 

I I [ = O. I j = 5.0E - 2 = .E - I 
1_ 01_-_l I' 1 o I - Al. [__ _ _O -Ai I 

1 3.5E-1 1.6E-9 3.5E-1 1 .OE-1I1 3.5E-1 3.4E-12 
2 -2.2E-1 (1.5, 2.2)E-9 -2.2E-1 (1.4, 0.4)E-11 -2.2E-1 (3.3, 2.7)E-12 
3 -1.1E-2 (1.5, -2.2)E-9 (E-2)-2.1 E- 1 (1.4, -0.4)E-11 (E-2)-2.1 E-1 (3.3, -2.7)E-12 
4 -1.OE-2 (1.3, 0.9)E-8 6.2E-2 (0.2, 1.0)E-9 (E-2)1.1E-1 (5.5, 4.3)E-10 
5 2.1 E-2 (1.3, -0.9)E-8 (E-2)6.9E-2 (0.2, -1.0)E-9 (E-2)-1.9E- 1 (5.5, -4.3)E- 10 
6 -5.OE-2 (0.5, 1.4)E-8 -4.1 E-2 (5.7, 4.7)E- I 0 (E-2) 1.5E- 1 (2.2, 6.2)E- 10 
7 -2.3E-2 (0.5, -1.4)E-8 (E-2)-2.OE-1 (5.7, -4.7)E- 10 (E-2)1.3E-1 (2.2, -6.2)E- 10 
8 -5.4E-2 1.5E-8 7.6E-2 5.6E-10 (E-2)2.1 E-1 6.5E-10 
9 -4.8E-2 (2.4, 2.1)E-9 1.3E-1 (7.1, 5.6)E-12 (E-2)-2.6E-1 (1.5, 2.4)E-12 
10 -2.5E-2 (2.4, -2.1)E-9 9.6E-2 (7.1, -5.6)E-12 -2.OE-1 (1.5, -2.4)E-12 

TABLE 3. Results for the second pair of random initial vectors 
in Example 8.2 

[{ = 0. c= 1.E - 2 =1.E - 1 
I i I Zi I 01~o - Ai I t ZI o a - Ai WI ' 1 0 -Al- . _. _._ ___ _ _ 

.__ 
_ _ 

. . _- 

1 5.9E-1 4.6E-10 5.9E-1 3.2E-11 5.9E-1 2.8E-11 
2 3.9E-1 (2.3, 0.6)E-9 3.9E-1 (2.1, 3.6)E- 11 3.9E-1 (2.0, 3.1)E-11 
3 -2.6E-1 (2.3, -0.6)E-9 -2.6E-1 (2.1, -3.6)E-11 -2.6E-1 (2.0, -3.1)E-11 
4 -2.9E- 1 (3.4, 1.6)E-5 -2.9E- 1 (1.4, 0.7)E-10 -2.9E- 1 (6.5, 3.7)E- 11 
5 1.OE-1 (3.4, -1.6)E-5 1.OE-1 (1.4, -0.7)E-10 1.OE-1 (6.5, -3.7)E-11 
6 -3.9E-2 (0.5, 5.3)E-5 3.9E-2 (0.3, 2.0)E-10 (E-2)1.1E-1 (2.1, 8.4)E-11 
7 8.8E-4 (0. , -5.3)E-5 (E-4)6.1E-2 (0.3, -2.0)E-10 (E-2)2.2E-1 (2.1, -8.4)E-11 
8 -8.6E-4 5.9E-5 -1.4E-1 2.2E- 10 1.3E-1 8.6E- 11 
9 3.2E-1 (1.6, 1.2)E-9 3.2E-1 (3.8, 3.8)E-11 (E-2)1.3E-1 (3.4, 3.6)E-11 
10 5.2E-1 (1.6, -1.2)E-9 4.6E-1 (3.8, -3.8)E-11 -1.OE-1 (3.4, -3.6)E-11 

In the next two examples, the intermediate Ritz values are computed in 
demonstrating convergence. By ?7.1, convergence is expected to be slowed down 
as c increases, but numerical errors destroy the faster convergence predicted 
theoretically for smaller c . In the long run, more Ritz values will be obtained 
by increasing e, owing to the stabilizing effect. 

Example 8.3. This example comes from Example 3 of [23], where the matrix is 
the following 100 x 100 diagonal matrix 

(29) A = diag(l, 2, ...,20, 41, 62, ..., 440, 481, 522,... 

1260, ..., 2561, 2642, ..., 4019, 4100). 

The two initial vectors are random and different. We mark a Ritz value con- 
verged if it is correct to the fifth significant digit and a(m) is the number of 
Ritz values converged at step m. 

Figure 1 plots the curve of a(m) for a pair of random initial vectors. The 
threshold parameter is chosen to be E = 0., 1.E - 4, i.E - 3. Although, 
initially, the case E = 0 demonstrates faster convergence, it deteriorates as m 
increases, with only 19 Ritz values converged at step 100. In contrast, both 
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FIGURE 1. Convergence results of 100 steps for the 100 x 100 
diagonal matrix of Example 8.3 with rebiorthogonalization 

the cases e = i.E - 4 and 1.E - 3 yield all the 100 eigenvalues to working 
accuracy at step 100. 

Example 8.4. Our last example is a 500 x 500 block upper triangular matrix. 
The first 250 diagonal entries consist of 1 x 1 blocks [a1] and the remaining 
250 diagonal entries consist of 2 x 2 blocks of the from 

A= ( b- c-) A r 
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Here, as, bl, and ci are pseudorandom numbers of normal distribution with 
mean 0 and variance 1. The remaining entries above the diagonal blocks are 
pseudorandom numbers uniformly distributed in [-0.5, 0.5]. The two initial 
vectors are identical random vectors. The eigenvalue distribution is plotted in 
Figure 4 (for the upper half plane). We mark a Ritz value converged to an 
eigenvalue if the relative error is less than 1.E - 3 and a(m) again denotes the 
number of converged Ritz values. 

The threshold parameters are e = 0., i.E- 6, i.E - 4, .E - 3. We 
first implement the algorithm with full rebiorthogonalization, and the results of 
a(m) for m = 130 are plotted in Figure 2. We then implement the algorithm 
without rebiorthogonalization and the results of a(m) for m = 130 are plotted 
in Figure 3. In this case, some repeated Ritz values appear for all three cases, 
but are not counted in a(m) and not shown in the figure. Again, a behavior 
similar to that in the last example is observed. 

60 , ?c (m) 

50 4? 
=E-6 , E- 4 

, H ?F-=E- 3 

404 

30 4 g , 

20 '_ 

10 

in 
20 30 40 50 60 70 80 90 100 110 120 130 

FIGURE 2. Convergence results of 130 steps for the 500 x 500 
random matrix of Example 8.4 with rebiorthogonalization 
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FIGURE 3. Convergence results of 130 steps for the 500 x 500 
random matrix of Example 8.4 without rebiorthogonalization 
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FIGURE 4. The distribution of the eigenvalues in Example 8.4 
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9. CONCLUSIONS 

We have developed a new method to reduce a matrix to a condensed form, 
which is between the tridiagonal form and the upper Hessenberg form. The 
sparseness structure is controlled by a threshold parameter. By relaxing from 
the tridiagonal form, we are able to maintain the pivots above the threshold 
parameter and hence gain in stability. In theory, stability is gained at the cost 
of reduced convergence rate owing to more breakdowns. In numerical practice, 
however, the minor slowdown in convergence is paid off by stability. On the 
other hand, from the stability point of view, it is not necessary to enforce the 
pivots to be one, which will not only slow down convergence but also signifi- 
cantly increase computational cost. Therefore, our algorithm is optimal in the 
sense that it balances stability with convergence rate. 

We have also sketched a symmetric version of Algorithm 3.1, which is new 
and of significance also in the classical symmetric case. 

The question remains of how to choose the best threshold parameter. Too 
small an e will result in fewer breakdowns but causes deterioration of the qual- 
ity of computational results and eventually reduces the number of eigenvalues 
that can be obtained. Too large an e yields more breakdowns and slows down 
convergence, but in the long run, more eigenvalues will be obtained. An appro- 
priate threshold parameter e should be as small as possible while sufficiently 
large to obtain all desired eigenvalues. Inevitably, the best choice will depend on 
the number of the eigenvalues desired as well as on the condition of the matrix. 
A successful solution to this problem will lead to a robust general algorithm for 
large sparse nonsymmetric eigenvalue problems. 
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